IEA (2024), Global EV Outlook 2024, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2024, Licence: CC BY 4.0
Trends in electric cars
Electric car sales
Nearly one in five cars sold in 2023 was electric
Electric car sales neared 14 million in 2023, 95% of which were in China, Europe and the United States
Almost 14 million new electric cars1 were registered globally in 2023, bringing their total number on the roads to 40 million, closely tracking the sales forecast from the 2023 edition of the Global EV Outlook (GEVO-2023). Electric car sales in 2023 were 3.5 million higher than in 2022, a 35% year-on-year increase. This is more than six times higher than in 2018, just 5 years earlier. In 2023, there were over 250 000 new registrations per week, which is more than the annual total in 2013, ten years earlier. Electric cars accounted for around 18% of all cars sold in 2023, up from 14% in 2022 and only 2% 5 years earlier, in 2018. These trends indicate that growth remains robust as electric car markets mature. Battery electric cars accounted for 70% of the electric car stock in 2023.
Global electric car stock, 2013-2023
OpenWhile sales of electric cars are increasing globally, they remain significantly concentrated in just a few major markets. In 2023, just under 60% of new electric car registrations were in the People’s Republic of China (hereafter ‘China’), just under 25% in Europe,2 and 10% in the United States – corresponding to nearly 95% of global electric car sales combined. In these countries, electric cars account for a large share of local car markets: more than one in three new car registrations in China was electric in 2023, over one in five in Europe, and one in ten in the United States. However, sales remain limited elsewhere, even in countries with developed car markets such as Japan and India. As a result of sales concentration, the global electric car stock is also increasingly concentrated. Nevertheless, China, Europe and the United States also represent around two-thirds of total car sales and stocks, meaning that the EV transition in these markets has major repercussions in terms of global trends.
In China, the number of new electric car registrations reached 8.1 million in 2023, increasing by 35% relative to 2022. Increasing electric car sales were the main reason for growth in the overall car market, which contracted by 8% for conventional (internal combustion engine) cars but grew by 5% in total, indicating that electric car sales are continuing to perform as the market matures. The year 2023 was the first in which China’s New Energy Vehicle (NEV)3 industry ran without support from national subsidies for EV purchases, which have facilitated expansion of the market for more than a decade. Tax exemption for EV purchases and non-financial support remain in place, after an extension, as the automotive industry is seen as one of the key drivers of economic growth. Some province-led support and investment also remains in place and plays an important role in China’s EV landscape. As the market matures, the industry is entering a phase marked by increased price competition and consolidation. In addition, China exported over 4 million cars in 2023, making it the largest auto exporter in the world, among which 1.2 million were EVs. This is markedly more than the previous year – car exports were almost 65% higher than in 2022, and electric car exports were 80% higher. The main export markets for these vehicles were Europe and countries in the Asia Pacific region, such as Thailand and Australia.
In the United States, new electric car registrations totalled 1.4 million in 2023, increasing by more than 40% compared to 2022. While relative annual growth in 2023 was slower than in the preceding two years, demand for electric cars and absolute growth remained strong. The revised qualifications for the Clean Vehicle Tax Credit, alongside electric car price cuts, meant that some popular EV models became eligible for credit in 2023. Sales of the Tesla Model Y, for example, increased 50% compared to 2022 after it became eligible for the full USD 7 500 tax credit. Overall, the new criteria established by the Inflation Reduction Act (IRA) appear to have supported sales in 2023, despite earlier concerns that tighter domestic content requirements for EV and battery manufacturing could create immediate bottlenecks or delays, such as for the Ford F-150 Lightning. As of 2024, new guidance for the tax credits means the number of eligible models has fallen to less than 30 from about 45,4 including several trim levels of the Tesla Model 3 becoming ineligible. However, in 2023 and 2024, leasing business models enable electric cars to qualify for the tax credits even if they do not fully meet the requirements, as leased cars can qualify for a less strict commercial vehicle tax credit and these tax credit savings can be passed to lease-holders. Such strategies have also contributed to sustained electric car roll-out.
In Europe, new electric car registrations reached nearly 3.2 million in 2023, increasing by almost 20% relative to 2022. In the European Union, sales amounted to 2.4 million, with similar growth rates. As in China, the high rates of electric car sales seen in Europe suggest that growth remains robust as markets mature, and several European countries reached important milestones in 2023. Germany, for example, became the third country after China and the United States to record half a million new battery electric car registrations in a single year, with 18% of car sales being battery electric (and another 6% plug-in hybrid).
However, the phase-out of several purchase subsidies in Germany slowed overall EV sales growth. At the start of 2023, PHEV subsidies were phased out, resulting in lower PHEV sales compared to 2022, and in December 2023, all EV subsidies ended after a ruling on the Climate and Transformation Fund. In Germany, the sales share for electric cars fell from 30% in 2022 to 25% in 2023. This had an impact on the overall electric car sales share in the region. In the rest of Europe, however, electric car sales and their sales share increased. Around 25% of all cars sold in France and the United Kingdom were electric, 30% in the Netherlands, and 60% in Sweden. In Norway, sales shares increased slightly despite the overall market contracting, and its sales share remains the highest in Europe, at almost 95%.
Electric car registrations and sales share in China, United States and Europe, 2018-2023
OpenSales in emerging markets are increasing, albeit from a low base, led by Southeast Asia and Brazil
Electric car sales continued to increase in emerging market and developing economies (EMDEs) outside China in 2023, but they remained low overall. In many cases, personal cars are not the most common means of passenger transport, especially compared with shared vans and minibuses, or two- and three-wheelers (2/3Ws), which are more prevalent and more often electrified, given their relative accessibility and affordability. The electrification of 2/3Ws and public or shared mobility will be key to achieve emissions reductions in such cases (see later sections in this report). While switching from internal combustion engine (ICE) to electric cars is important, the effect on overall emissions differs depending on the mode of transport that is displaced. Replacing 2/3Ws, public and shared mobility or more active forms of transport with personal cars may not be desirable in all cases.
In India, electric car registrations were up 70% year-on-year to 80 000, compared to a growth rate of under 10% for total car sales. Around 2% of all cars sold were electric. Purchase incentives under the Faster Adoption and Manufacturing of Electric Vehicles (FAME II) scheme, supply-side incentives under the Production Linked Incentive (PLI) scheme, tax benefits and the Go Electric campaign have all contributed to fostering demand in recent years. A number of new models also became popular in 2023, such as Mahindra’s XUV400, MG’s Comet, Citroën’s e-C3, BYD’s Yuan Plus, and Hyundai’s Ioniq 5, driving up growth compared to 2022. However, if the forthcoming FAME III scheme includes a subsidy reduction, as has been speculated in line with lower subsidy levels in the 2024 budget, future growth could be affected. Local carmakers have thus far maintained a strong foothold in the market, supported by advantageous import tariffs, and account for 80% of electric car sales in cumulative terms since 2010, led by Tata (70%) and Mahindra (10%).
In Thailand, electric car registrations more than quadrupled year-on-year to nearly 90 000, reaching a notable 10% sales share – comparable to the share in the United States. This is all the more impressive given that overall car sales in the country decreased from 2022 to 2023. New subsidies, including for domestic battery manufacturing, and lower import and excise taxes, combined with the growing presence of Chinese carmakers, have contributed to rapidly increasing sales. Chinese companies account for over half the sales to date, and they could become even more prominent given that BYD plans to start operating EV production facilities in Thailand in 2024, with an annual production capacity of 150 000 vehicles for an investment of just under USD 500 million. Thailand aims to become a major EV manufacturing hub for domestic and export markets, and is aiming to attract USD 28 billion in foreign investment within 4 years, backed by specific incentives to foster investment.
In Viet Nam, after an exceptional 2022 for the overall car market, car sales contracted by 25% in 2023, but electric car sales still recorded unprecedented growth: from under 100 in 2021, to 7 000 in 2022, and over 30 000 in 2023, reaching a 15% sales share. Domestic front-runner VinFast, established in 2017, accounted for nearly all domestic sales. VinFast also started selling electric sports utility vehicles (SUVs) in North America in 2023, as well as developing manufacturing facilities in order to unlock domestic content-linked subsidies under the US IRA. VinFast is investing around USD 2 billion and targets an annual production of 150 000 vehicles in the United States by 2025. The company went public in 2023, far exceeding expectations with a debut market valuation of around USD 85 billion, well beyond General Motors (GM) (USD 46 billion), Ford (USD 48 billion) or BMW (USD 68 billion), before it settled back down around USD 20 billion by the end of the year. VinFast also looks to enter regional markets, such as India and the Philippines.
In Malaysia, electric car registrations more than tripled to 10 000, supported by tax breaks and import duty exemptions, as well as an acceleration in charging infrastructure roll-out. In 2023, Mercedes-Benz marketed the first domestically assembled EV, and both BYD and Tesla also entered the market.
In Latin America, electric car sales reached almost 90 000 in 2023, with markets in Brazil, Colombia, Costa Rica and Mexico leading the region. In Brazil, electric car registrations nearly tripled year-on-year to more than 50 000, a market share of 3%. Growth in Brazil was underpinned by the entry of Chinese carmakers, such as BYD with its Song and Dolphin models, Great Wall with its H6, and Chery with its Tiggo 8, which immediately ranked among the best-selling models in 2023. Road transport electrification in Brazil could bring significant climate benefits given the largely low-emissions power mix, as well as reducing local air pollution. However, EV adoption has been slow thus far, given the national prioritisation of ethanol-based fuels since the late 1970s as a strategy to maintain energy security in the face of oil shocks. Today, biofuels are important alternative fuels available at competitive cost and aligned with the existing refuelling infrastructure. Brazil remains the world’s largest producer of sugar cane, and its agribusiness represents about one-fourth of GDP. At the end of 2023, Brazil launched the Green Mobility and Innovation Programme, which provides tax incentives for companies to develop and manufacture low-emissions road transport technology, aggregating to more than BRA 19 billion (Brazilian reals) (USD 3.8 billion) over the 2024-2028 period. Several major carmakers already in Brazil are developing hybrid ethanol-electric models as a result. China’s BYD and Great Wall are also planning to start domestic manufacturing, counting on local battery metal deposits, and plan to sell both fully electric and hybrid ethanol-electric models. BYD is investing over USD 600 million in its electric car plant in Brazil – its first outside Asia – for an annual capacity of 150 000 vehicles. BYD also partnered with Raízen to develop charging infrastructure in eight Brazilian cities starting in 2024. GM, on the other hand, plans to stop producing ICE (including ethanol) models and go fully electric, notably to produce for export markets. In 2024, Hyundai announced investments of USD 1.1 billion to 2032 to start local manufacturing of electric, hybrid and hydrogen cars.
In Mexico, electric car registrations were up 80% year-on-year to 15 000, a market share just above 1%. Given its proximity to the United States, Mexico’s automotive market is already well integrated with North American partners, and benefits from advantageous trade agreements, large existing manufacturing capacity, and eligibility for subsidies under the IRA. As a result, local EV supply chains are developing quickly, with expectations that this will spill over into domestic markets. Tesla, Ford, Stellantis, BMW, GM, Volkswagen (VW) and Audi have all either started manufacturing or announced plans to manufacture EVs in Mexico. Chinese carmakers such as BYD, Chery and SAIC are also considering expanding to Mexico. Elsewhere in the region, Colombia and Costa Rica are seeing increasing electric car sales, with around 6 000 and 5 000 in 2023, respectively, but sales remain limited in other Central and South American countries.
Throughout Africa, Eurasia and the Middle East, electric cars are still rare, accounting for less than 1% of total car sales. However, as Chinese carmakers look for opportunities abroad, new models – including those produced domestically – could boost EV sales. For example, in Uzbekistan, BYD set up a joint venture with UzAuto Motors in 2023 to produce 50 000 electric cars annually, and Chery International established a partnership with ADM Jizzakh. This partnership has already led to a steep increase in electric car sales in Uzbekistan, reaching around 10 000 in 2023. In the Middle East, Jordan boasts the highest electric car sales share, at more than 45%, supported by much lower import duties relative to ICE cars, followed by the United Arab Emirates, with 13%.
Strong electric car sales in the first quarter of 2024 surpass the annual total from just four years ago
Electric car sales remained strong in the first quarter of 2024, surpassing those of the same period in 2023 by around 25% to reach more than 3 million. This growth rate was similar to the increase observed for the same period in 2023 compared to 2022. The majority of the additional sales came from China, which sold about half a million more electric cars than over the same period in 2023. In relative terms, the most substantial growth was observed outside of the major EV markets, where sales increased by over 50%, suggesting that the transition to electromobility is picking up in an increasing number of countries worldwide.
Quarterly electric car sales by region, 2021-2024
OpenFrom January to March of this year, nearly 1.9 million electric cars were sold in China, marking an almost 35% increase compared to sales in the first quarter of 2023. In March, NEV sales in China surpassed a share of 40% in overall car sales for the first time, according to retail sales reported by the China Passenger Car Association. As witnessed in 2023, sales of plug-in hybrid electric cars are growing faster than sales of pure battery electric cars. Plug-in hybrid electric car sales in the first quarter increased by around 75% year-on-year in China, compared to just 15% for battery electric car sales, though the former started from a lower base.
In Europe, the first quarter of 2024 saw year-on-year growth of over 5%, slightly above the growth in overall car sales and thereby stabilising the EV sales share at a similar level as last year. Electric car sales growth was particularly high in Belgium, where around 60 000 electric cars were sold, almost 35% more than the year before. However, Belgium represents less than 5% of total European car sales. In the major European markets – France, Germany, Italy and the United Kingdom (together representing about 60% of European car sales) – growth in electric car sales was lower. In France, overall EV sales in the first quarter grew by about 15%, with BEV sales growth being higher than for PHEVs. While this is less than half the rate as over the same period last year, total sales were nonetheless higher and led to a slight increase in the share of EVs in total car sales. The United Kingdom saw similar year-on-year growth (over 15%) in EV sales as France, about the same rate as over the same period last year. In Germany, where battery electric car subsidies ended in 2023, sales of electric cars fell by almost 5% in the first quarter of 2024, mainly as a result of a 20% year-on-year decrease in March. The share of EVs in total car sales was therefore slightly lower than last year. As in China, PHEV sales in both Germany and the United Kingdom were stronger than BEV sales. In Italy, sales of electric cars in the first three months of 2024 were more than 20% lower than over the same period in 2023, with the majority of the decrease taking place in the PHEV segment. However, this trend could be reversed based on the introduction of a new incentive scheme, and if Chinese automaker Chery succeeds in appealing to Italian consumers when it enters the market later this year.
In the United States, first-quarter sales reached around 350 000, almost 15% higher than over the same period the year before. As in other major markets, the sales growth of PHEVs was even higher, at 50%. While the BEV sales share in the United States appears to have fallen somewhat over the past few months, the sales share of PHEVs has grown.
In smaller EV markets, sales growth in the first months of 2024 was much higher, albeit from a low base. In January and February, electric car sales almost quadrupled in Brazil and increased more than sevenfold in Viet Nam. In India, sales increased more than 50% in the first quarter of 2024. These figures suggest that EVs are gaining momentum across diverse markets worldwide.
Since 2021, first-quarter electric car sales have typically accounted for 15-20% of the total global annual sales. Based on this observed trend, coupled with policy momentum and the seasonality that EV sales typically experience, we estimate that electric car sales could reach around 17 million in 2024. This indicates robust growth for a maturing market, with 2024 sales to surpass those of 2023 by more than 20% and EVs to reach a share in total car sales of more than one-fifth.
Electric car sales, 2012-2024
OpenThe majority of the additional 3 million electric car sales projected for 2024 relative to 2023 are from China. Despite the phase-out of NEV purchase subsidies last year, sales in China have remained robust, indicating that the market is maturing. With strong competition and relatively low-cost electric cars, sales are to grow by almost 25% in 2024 compared to last year, reaching around 10 million. If confirmed, this figure will come close to the total global electric car sales in 2022. As a result, electric car sales could represent around 45% of total car sales in China over 2024.
In 2024, electric car sales in the United States are projected to rise by 20% compared to the previous year, translating to almost half a million more sales, relative to 2023. Despite reporting of a rocky end to 2023 for electric cars in the United States, sales shares are projected to remain robust in 2024. Over the entire year, around one in nine cars sold are expected to be electric.
Based on recent trends, and considering that tightening CO2 targets are due to come in only in 2025, the growth in electric car sales in Europe is expected to be the lowest of the three largest markets. Sales are projected to reach around 3.5 million units in 2024, reflecting modest growth of less than 10% compared to the previous year. In the context of a generally weak outlook for passenger car sales, electric cars would still represent about one in four cars sold in Europe.
Outside of the major EV markets, electric car sales are anticipated to reach the milestone of over 1 million units in 2024, marking a significant increase of over 40% compared to 2023. Recent trends showing the success of both homegrown and Chinese electric carmakers in Southeast Asia underscore that the region is set to make a strong contribution to the sales of emerging EV markets (see the section on Trends in the electric vehicle industry). Despite some uncertainty surrounding whether India’s forthcoming FAME III scheme will include subsidies for electric cars, we expect sales in India to remain robust, and to experience around 50% growth compared to 2023. Across all regions outside the three major EV markets, electric car sales are expected to represent around 5% of total car sales in 2024, which – considering the high growth rates seen in recent years – could indicate that a tipping point towards global mass adoption is getting closer.
There are of course downside risks to the 2024 outlook for electric car sales. Factors such as high interest rates and economic uncertainty could potentially reduce the growth of global electric car sales in 2024. Other challenges may come from the IRA restrictions on US electric car tax incentives, and the tightening of technical requirements for EVs to qualify for the purchase tax exemption in China. However, there are also upside potentials to consider. New markets may open up more rapidly than anticipated, as automakers expand their EV operations and new entrants compete for market share. This could lead to accelerated growth in electric car sales globally, surpassing the initial estimations.
Electric car availability and affordability
More electric models are becoming available, but the trend is towards larger ones
The number of available electric car models nears 600, two-thirds of which are large vehicles and SUVs
In 2023, the number of available models for electric cars increased 15% year-on-year to nearly 590, as carmakers scaled up electrification plans, seeking to appeal to a growing consumer base. Meanwhile, the number of fully ICE models (i.e. excluding hybrids) declined for the fourth consecutive year, at an average of 2%. Based on recent original equipment manufacturer (OEM) announcements, the number of new electric car models could reach 1 000 by 2028. If all announced new electric models actually reach the market, and if the number of available ICE car models continues to decline by 2% annually, there could be as many electric as ICE car models before 2030.
As reported in GEVO-2023, the share of small and medium electric car models is decreasing among available electric models: in 2023, two-thirds of the battery-electric models on the market were SUVs,5 pick-up trucks or large cars. Just 25% of battery electric car sales in the United States were for small and medium models, compared to 40% in Europe and 50% in China. Electric cars are following the same trend as conventional cars, and getting bigger on average. In 2023, SUVs, pick-up trucks and large models accounted for 65% of total ICE car sales worldwide, and more than 80% in the United States, 60% in China and 50% in Europe.
Several factors underpin the increase in the share of large models. Since the 2010s, conventional SUVs in the United States have benefited from less stringent tailpipe emissions rules than smaller models, creating an incentive for carmakers to market more vehicles in that segment. Similarly, in the European Union, CO2 targets for passenger cars have included a compromise on weight, allowing CO2 leeway for heavier vehicles in some cases. Larger vehicles also mean larger margins for carmakers. Given that incumbent carmakers are not yet making a profit on their EV offer in many cases, focusing on larger models enables them to increase their margins. Under the US IRA, electric SUVs can qualify for tax credits as long as they are priced under USD 80 000, whereas the limit stands at USD 55 000 for a sedan, creating an incentive to market SUVs if a greater margin can be gathered. On the demand side, there is now strong willingness to pay for SUVs or large models. Consumers are typically interested in longer-range and larger cars for their primary vehicles, even though small models are more suited to urban use. Higher marketing spend on SUVs compared to smaller models can also have an impact on consumer choices.
The progressive shift towards ICE SUVs has been dramatically limiting fuel savings. Over the 2010-2022 period, without the shift to SUVs, energy use per kilometre could have fallen at an average annual rate 30% higher than the actual rate. Switching to electric in the SUV and larger car segments can therefore achieve immediate and significant CO2 emissions reductions, and electrification also brings considerable benefits in terms of reducing air pollution and non-tailpipe emissions, especially in urban settings. In 2023, if all ICE and HEV sales of SUVs had instead been BEV, around 770 Mt CO2 could have been avoided globally over the cars’ lifetimes (see section 10 on lifecycle analysis). This is equivalent to the total road emissions of China in 2023.
Breakdown of battery electric car sales in selected countries and regions by segment, 2018-2023
OpenNevertheless, from a policy perspective, it is critical to mitigate the negative spillovers associated with an increase in larger electric cars in the fleet.
Larger electric car models have a significant impact on battery supply chains and critical mineral demand. In 2023, the sales-weighted average battery electric SUV in Europe had a battery almost twice as large as the one in the average small electric car, with a proportionate impact on critical mineral needs. Of course, the range of small cars is typically shorter than SUVs and large cars (see later section on ranges). However, when comparing electric SUVs and medium-sized electric cars, which in 2023 offered a similar range, the SUV battery was still 25% larger. This means that if all electric SUVs sold in 2023 had instead been medium-sized cars, around 60 GWh of battery equivalent could have been avoided globally, with limited impact on range. Accounting for the different chemistries used in China, Europe, and the United States, this would be equivalent to almost 6 000 tonnes of lithium, 30 000 tonnes of nickel, almost 7 000 tonnes of cobalt, and over 8 000 tonnes of manganese.
Larger batteries also require more power, or longer charging times. This can put pressure on electricity grids and charging infrastructure by increasing occupancy, which could create issues during peak utilisation, such as at highway charging points at high traffic times.
In addition, larger vehicles also require greater quantities of materials such as iron and steel, aluminium and plastics, with a higher environmental and carbon footprint for materials production, processing and assembly. Because they are heavier, larger models also have higher electricity consumption. The additional energy consumption resulting from the increased mass is mitigated by regenerative braking to some extent, but in 2022, the sales-weighted average electricity consumption of electric SUVs was 20% higher than that of other electric cars.6
Major carmakers have announced launches of smaller and more affordable electric car models over the past few years. However, when all launch announcements are considered, far fewer smaller models are expected than SUVs, large models and pick-up trucks. Only 25% of the 400+ launches expected over the 2024-2028 period are small and medium models, which represents a smaller share of available models than in 2023. Even in China, where small and medium models have been popular, new launches are typically for larger cars.
Number of available car models in 2023 and expected new ones by powertrain, country or region and segment, 2024-2028
OpenSeveral governments have responded by introducing policies to create incentives for smaller and lighter passenger cars. In Norway, for example, all cars are subject to a purchase tax based on weight, CO2 and nitrogen oxides (NOx) emissions, though electric cars were exempt from the weight-based tax prior to 2023. Any imported cars weighing more than 500 kg must also pay an entry fee for each additional kg. In France, a progressive weight-based tax applies to ICE and PHEV cars weighing above 1 600 kg, with a significant impact on price: weight tax for a Land Rover Defender 130 (2 550 kg) adds up to more than EUR 21 500, versus zero for a Renault Clio (1 100 kg). Battery electric cars have been exempted to date. In February 2024, a referendum held in Paris resulted in a tripling of city parking fees for visiting SUVs, applicable to ICE, hybrid and plug-in hybrid cars above 1 600 kg and battery electric ones above 2 000 kg, in an effort to limit the use of large and/or polluting vehicles. Other examples exist in Estonia, Finland, Switzerland and the Netherlands. A number of policy options may be used, such as caps and fleet averages for vehicle footprint, weight, and/or battery size; access to finance for smaller vehicles; and sustained support for public charging, enabling wider use of shorter-range cars.
Average range is increasing, but only moderately
Concerns about range compared to ICE vehicles, and about the availability of charging infrastructure for long-distance journeys, also contribute to increasing appetite for larger models with longer range.
With increasing battery size and improvements in battery technology and vehicle design, the sales-weighted average range of battery electric cars grew by nearly 75% between 2015 and 2023, although trends vary by segment. The average range of small cars in 2023 – around 150 km – is not much higher than it was in 2015, indicating that this range is already well suited for urban use (with the exception of taxis, which have much higher daily usage). Large, higher-end models already offered higher ranges than average in 2015, and their range has stagnated through 2023, averaging around 360-380 km. Meanwhile, significant improvements have been made for medium-sized cars and SUVs, the range of which now stands around 380 km, whereas it averaged around 150 km for medium cars and 270 km for SUVs in 2015. This is encouraging for consumers looking to purchase an electric car for longer journeys rather than urban use.
Since 2020, growth in the average range of vehicles has been slower than over the 2015-2020 period. This could result from a number of factors, including fluctuating battery prices, carmakers’ attempts to limit additional costs as competition intensifies, and technical constraints (e.g. energy density, battery size). It could also reflect that beyond a certain range at which most driving needs are met, consumers’ willingness to pay for a marginal increase in battery size and range is limited. Looking forward, however, the average range could start increasing again as novel battery technologies mature and prices fall.
More affordable electric cars are needed to reach a mass-market tipping point
An equitable and inclusive transition to electric mobility, both within countries and at the global level, hinges on the successful launch of affordable EVs (including but not limited to electric cars). In this section, we use historic sales and price data for electric and ICE models around the world to examine the total cost of owning an electric car, price trends over time, and the remaining electric premium, by country and vehicle size.7 Specific models are used for illustration.
Total cost of ownership
Car purchase decisions typically involve consideration of retail price and available subsidies as well as lifetime operating costs, such as fuel costs, insurance, maintenance and depreciation, which together make up the total cost of ownership (TCO). Reaching TCO parity between electric and ICE cars creates important financial incentives to make the switch. This section examines the different components of the TCO, by region and car size.
In 2023, upfront retail prices for electric cars were generally higher than for their ICE equivalents, which increased their TCO in relative terms. On the upside, higher fuel efficiency and lower maintenance costs enable fuel cost savings for electric cars, lowering their TCO. This is especially true in periods when fuel prices are high, in places where electricity prices are not too closely correlated to fossil fuel prices. Depreciation is also a major factor in determining TCO: As a car ages, it loses value, and depreciation for electric cars tends to be faster than for ICE equivalents, further increasing their TCO. Accelerated depreciation could, however, prove beneficial for the development of second-hand markets.
However, the trend towards faster depreciation for electric vehicles might be reversed for multiple reasons. Firstly, consumers are gaining more confidence in electric battery lifetimes, thereby increasing the resale value of EVs. Secondly, strong demand and the positive brand image of some BEV models can mean they hold their value longer, as shown by Tesla models depreciating more slowly than the average petrol car in the United States. Finally, increasing fuel prices in some regions, the roll-out of low-emissions zones that restrict access for the most polluting vehicles, and taxes and parking fees specifically targeted at ICE vehicles could mean they experience faster depreciation rates than EVs in the future. In light of these two possible opposing depreciation trends, the same fixed annual depreciation rate for both BEVs and ICE vehicles has been applied in the following cost of ownership analysis.
Subsidies help lower the TCO of electric cars relative to ICE equivalents in multiple ways. A purchase subsidy lowers the original retail price, thereby lowering capital depreciation over time, and a lower retail price implies lower financing costs through cumulative interest. Subsidies can significantly reduce the number of years required to reach TCO parity between electric and ICE equivalents. As of 2022, we estimate that TCO parity could be reached in most cases in under 7 years in the three major EV markets, with significant variations across different car sizes. In comparison, for models purchased at 2018 prices, TCO parity was much harder to achieve.
In Germany, for example, we estimate that the sales-weighted average price of a medium-sized battery electric car in 2022 was 10-20% more expensive than its ICE equivalent, but 10-20% cheaper in cumulative costs of ownership after 5 years, thanks to fuel and maintenance costs savings. In the case of an electric SUV, we estimate that the average annual operating cost savings would amount to USD 1 800 when compared to the equivalent conventional SUV over a period of 10 years. In the United States, despite lower fuel prices with respect to electricity, the higher average annual mileage results in savings that are close to Germany at USD 1 600 per year. In China, lower annual distance driven reduces fuel cost savings potential, but the very low price of electricity enables savings of about USD 1 000 per year.
In EMDEs, some electric cars can also be cheaper than ICE equivalents over their lifetime. This is true in India, for example, although it depends on the financing instrument. Access to finance is typically much more challenging in EMDEs due to higher interest rates and the more limited availability of cheap capital. Passenger cars have also a significantly lower market penetration in the first place, and many car purchases are made in second-hand markets. Later sections of this report look at markets for used electric cars, as well as the TCO for electric and conventional 2/3Ws in EMDEs, where they are far more widespread than cars as a means of road transport.
Upfront retail price parity
Achieving price parity between electric and ICE cars will be an important tipping point. Even when the TCO for electric cars is advantageous, the upfront retail price plays a decisive role, and mass-market consumers are typically more sensitive to price premiums than wealthier buyers. This holds true not only in emerging and developing economies, which have comparatively high costs of capital and comparatively low household and business incomes, but also in advanced economies. In the United States, for example, surveys suggest affordability was the top concern for consumers considering EV adoption in 2023. Other estimates show that even among SUV and pick-up truck consumers, only 50% would be willing to purchase one above USD 50 000.
In this section, we examine historic price trends for electric and ICE cars over the 2018-2022 period, by country and car size, and for best-selling models in 2023.
Electric cars are generally getting cheaper as battery prices drop, competition intensifies, and carmakers achieve economies of scale. In most cases, however, they remain on average more expensive than ICE equivalents. In some cases, after adjusting for inflation, their price stagnated or even moderately increased between 2018 and 2022.
Larger batteries for longer ranges increase car prices, and so too do the additional options, equipment, digital technology and luxury features that are often marketed on top of the base model. A disproportionate focus on larger, premium models is pushing up the average price, which – added to the lack of available models in second-hand markets (see below) – limits potential to reach mass-market consumers. Importantly, geopolitical tension, trade and supply chain disruptions, increasing battery prices in 2022 relative to 2021, and rising inflation, have also significantly affected the potential for further cost declines.
Competition can also play an important role in bringing down electric car prices. Intensifying competition leads carmakers to cut prices to the minimum profit margin they can sustain, and – if needed – to do so more quickly than battery and production costs decline. For example, between mid-2022 and early-2024, Tesla cut the price of its Model Y from between USD 65 000 and USD 70 000 to between USD 45 000 and USD 55 000 in the United States. Battery prices for such a model dropped by only USD 3 000 over the same period in the United States, suggesting that a profit margin may still be made at a lower price. Similarly, in China, the price of the Base Model Y dropped from CNY 320 000 (Yuan renminbi) (USD 47 000) to CNY 250 000 (USD 38 000), while the corresponding battery price fell by only USD 1 000. Conversely, in cases where electric models remain niche or aimed at wealthier, less price-sensitive early adopters, their price may not fall as quickly as battery prices, if carmakers can sustain greater margins.
Price gap between the sales-weighted average price of conventional and electric cars in selected countries, before subsidy, by size, in 2018 and 2022
OpenChina
In China, where the sales share of electric cars has been high for several years, the sales-weighted average price of electric cars (before purchase subsidy) is already lower than that of ICE cars. This is true not only when looking at total sales, but also at the small cars segment, and is close for SUVs. After accounting for the EV exemption from the 10% vehicle purchase tax, electric SUVs were already on par with conventional ones in 2022, on average.
Electric car prices have dropped significantly since 2018. We estimate that around 55% of the electric cars sold in China in 2022 were cheaper than their average ICE equivalent, up from under 10% in 2018. Given the further price declines between 2022 and 2023, we estimate that this share increased to around 65% in 2023. These encouraging trends suggest that price parity between electric and ICE cars could also be reached in other countries in certain segments by 2030, if the sales share of electric cars continues to grow, and if supporting infrastructure – such as for charging – is sustained.
As reported in detail in GEVO-2023, China remains a global exception in terms of available inexpensive electric models. Local carmakers already market nearly 50 small, affordable electric car models, many of which are priced under CNY 100 000 (USD 15 000). This is in the same range as best-selling small ICE cars in 2023, which cost from CNY 70 000 to CNY 100 000. In 2022, the best-selling electric car was SAIC’s small Wuling Hongguang Mini EV, which accounted for 10% of all BEV sales. It was priced around CNY 40 000, weighing under 700 kg for a 170-km range. In 2023, however, it was overtaken by Tesla models, among other larger models, as new consumers seek longer ranges and higher-end options and digital equipment.
United States
In the United States, the sales-weighted average price of electric cars decreased over the 2018-2022 period, primarily driven by a considerable drop in the price of Tesla cars, which account for a significant share of sales. The sales-weighted average retail price of electric SUVs fell slightly more quickly than the average SUV battery costs over the same period. The average price of small and medium models also decreased, albeit to a smaller extent.
Across all segments, electric models remained more expensive than conventional equivalents in 2022. However, the gap has since begun to close, as market size increases and competition leads carmakers to cut prices. For example, in 2023-2024, Tesla’s Model 3 could be found in the USD 39 000 to USD 42 000 range, which is comparable to the average price for new ICE cars, and a new Model Y priced under USD 50 000 was launched. Rivian is expecting to launch its R2 SUV in 2026 at USD 45 000, which is much less than previous vehicles. Average price parity between electric and conventional SUVs could be reached by 2030, but it may only be reached later for small and medium cars, given their lower availability and popularity.
Smaller, cheaper electric models have further to go to reach price parity in the United States. We estimate that in 2022, only about 5% of the electric cars sold in the United States were cheaper than their average ICE equivalent. In 2023, the cheapest electric cars were priced around USD 30 000 (e.g. Chevrolet Bolt, Nissan Leaf, Mini Cooper SE). To compare, best-selling small ICE options cost under USD 20 000 (e.g. Kia Rio, Mitsubishi Mirage), and many best-selling medium ICE options between USD 20 000 and USD 25 000 (e.g. Honda Civic, Toyota Corolla, Kia Forte, Hyundai Avante, Nissan Sentra).
Around 25 new all-electric car models are expected in 2024, but only 5 of them are expected below USD 50 000, and none under the USD 30 000 mark. Considering all the electric models expected to be available in 2024, about 75% are priced above USD 50 000, and fewer than 10 under USD 40 000, even after taking into account the USD 7 500 tax credit under the IRA for eligible cars as of February 2024. This means that despite the tax credit, few electric car models directly compete with small mass-market ICE models.
In December 2023, GM stopped production of its best-selling electric car, the Bolt, announcing it would introduce a new version in 2025. The Nissan Leaf (40 kWh) therefore remains the cheapest available electric car in 2024, at just under USD 30 000, but is not yet eligible for IRA tax credits. Ford announced in 2024 that it would move away from large and expensive electric cars as a way to convince more consumers to switch to electric, at the same time as increasing output of ICE models to help finance a transition to electric mobility. In 2024, Tesla announced it would start producing a next-generation, compact and affordable electric car in June 2025, but the company had already announced in 2020 that it would deliver a USD 25 000 model within 3 years. Some micro urban electric cars are already available between USD 5 000 and USD 20 000 (e.g. Arcimoto FUV, Nimbus One), but they are rare. In theory, such models could cover many use cases, since 80% of car journeys in the United States are under 10 miles.
Europe
Pricing trends differ across European countries, and typically vary by segment.
In Norway, after taking into account the EV sales tax exemption, electric cars are already cheaper than ICE equivalents across all segments. In 2022, we estimate that the electric premium stood around -15%, and even -30% for medium-sized cars. Five years earlier, in 2018, the overall electric premium was less advantageous, at around -5%. The progressive reintroduction of sales taxes on electric cars may change these estimates for 2023 onwards.
Germany’s electric premium ranks among the lowest in the European Union. Although the sales-weighted average electric premium increased slightly between 2018 and 2022, it stood at 15% in 2022. It is particularly low for medium-sized cars (10-15%) and SUVs (20%), but remains higher than 50% for small models. In the case of medium cars, the sales-weighted average electric premium was as low as EUR 5 000 in 2022. We estimate that in 2022, over 40% of the medium electric cars sold in Germany were cheaper than their average ICE equivalent. Looking at total sales, over 25% of the electric cars sold in 2022 were cheaper than their average ICE equivalent. In 2023, the cheapest models among the best-selling medium electric cars were priced between EUR 22 000 and EUR 35 000 (e.g. MG MG4, Dacia Spring, Renault Megane), far cheaper than the three front-runners priced above EUR 45 000 (VW ID.3, Cupra Born, and Tesla Model 3). To compare, best-selling ICE cars in the medium segment were also priced between EUR 30 000 and EUR 45 000 (e.g. VW Golf, VW Passat Santana, Skoda Octavia Laura, Audi A3, Audi A4). At the end of 2023, Germany phased out its subsidy for electric car purchases, but competition and falling model prices could compensate for this.
In France, the sales-weighted average electric premium stagnated between 2018 and 2022. The average price of ICE cars also increased over the same period, though more moderately than that of electric models. Despite a drop in the price of electric SUVs, which stood at a 30% premium over ICE equivalents in 2022, the former do not account for a high enough share of total electric car sales to drive down the overall average. The electric premium for small and medium cars remains around 40-50%.
These trends mirror those of some of the best-selling models. For example, when adjusting prices for inflation, the small Renault Zoe was sold at the same price on average in 2022-2023 as in 2018-2019, or EUR 30 000 (USD 32 000). It could be found for sale at as low as EUR 25 000 in 2015-2016. The earlier models, in 2015, had a battery size of around 20 kWh, which increased to around 40 kWh in 2018‑2019 and 50 kWh in newer models in 2022-2023. Yet European battery prices fell more quickly than the battery size increased over the same period, indicating that battery size alone does not explain car price dynamics.
In 2023, the cheapest electric cars in France were priced between EUR 22 000 and EUR 30 000 (e.g. Dacia Spring, Renault Twingo E-Tech, Smart EQ Fortwo), while best-selling small ICE models were available between EUR 10 000 and EUR 20 000 (e.g. Renault Clio, Peugeot 208, Citroën C3, Dacia Sandero, Opel Corsa, Skoda Fabia). Since mid-2024, subsidies of up to EUR 4 000 can be granted for electric cars priced under EUR 47 000, with an additional subsidy of up to EUR 3 000 for lower-income households.
In the United Kingdom, the sales-weighted average electric premium shrank between 2018 and 2022, thanks to a drop in prices for electric SUVs, as in the United States. Nonetheless, electric SUVs still stood at a 45% premium over ICE equivalents in 2022, which is similar to the premium for small models but far higher than for medium cars (20%).
In 2023, the cheapest electric cars in the United Kingdom were priced from GBP 27 000 to GBP 30 000 (USD 33 000 to 37 000) (e.g. MG MG4, Fiat 500, Nissan Leaf, Renault Zoe), with the exception of the Smart EQ Fortwo, priced at GBP 21 000. To compare, best-selling small ICE options could be found from GBP 10 000 to 17 000 (e.g. Peugeot 208, Fiat 500, Dacia Sandero) and medium options below GBP 25 000 (e.g. Ford Puma). Since July 2022, there has been no subsidy for the purchase of electric passenger cars.
Elsewhere in Europe, electric cars remain typically much more expensive than ICE equivalents. In Poland, for example, just a few electric car models could be found at prices competitive with ICE cars in 2023, under the PLN 150 000 (Polish zloty) (EUR 35 000) mark. Over 70% of electric car sales in 2023 were for SUVs, or large or more luxurious models, compared to less than 60% for ICE cars.
In 2023, there were several announcements by European OEMs for smaller models priced under EUR 25 000 in the near-term (e.g. Renault R5, Citroën e-C3, Fiat e-Panda, VW ID.2all). There is also some appetite for urban microcars (i.e. L6-L7 category), learning from the success of China’s Wuling. Miniature models bring important benefits if they displace conventional models, helping reduce battery and critical mineral demand. Their prices are often below USD 5 000 (e.g. Microlino, Fiat Topolino, Citroën Ami, Silence S04, Birò B2211).
In Europe and the United States, electric car prices are expected to come down as a result of falling battery prices, more efficient manufacturing, and competition. Independent analyses suggest that price parity between some electric and ICE car models in certain segments could be reached over the 2025-2028 period, for example for small electric cars in Europe in 2025 or soon after. However, many market variables could delay price parity, such as volatile commodity prices, supply chain bottlenecks, and the ability of carmakers to yield sufficient margins from cheaper electric models. The typical rule in which economies of scale bring down costs is being complicated by numerous other market forces. These include a dynamic regulatory context, geopolitical competition, domestic content incentives, and a continually evolving technology landscape, with competing battery chemistries that each have their own economies of scale and regional specificities.
Japan
Japan is a rare example of an advanced economy where small models – both for electric and ICE vehicles – appeal to a large consumer base, motivated by densely populated cities with limited parking space, and policy support. In 2023, about 60% of total ICE sales were for small models, and over half of total electric sales. Two electric cars from the smallest “Kei” category, the Nissan Sakura and Mitsubishi eK-X, accounted for nearly 50% of national electric car sales alone, and both are priced between JPY 2.3 million (Japanese yen) and JPY 3 million (USD 18 000 to USD 23 000). However, this is still more expensive than best-selling small ICE cars (e.g. Honda N Box, Daihatsu Hijet, Daihatsu Tanto, Suzuki Spacia, Daihatsu Move), priced between USD 13 000 and USD 18 000. In 2024, Nissan announced that it would aim to reach cost parity (of production, not retail price) between electric and ICE cars by 2030.
Emerging market and developing economies
In EMDEs, the absence of small and cheaper electric car models is a significant hindrance to wider market uptake. Many of the available car models are SUVs or large models, targeting consumers of high-end goods, and far too expensive for mass-market consumers, who often do not own a personal car in the first place (see later sections on second-hand car markets and 2/3Ws).
In India, while Tata’s small Tiago/Tigor models, which are priced between USD 10 000 and USD 15 000, accounted for about 20% of total electric car sales in 2023, the average best-selling small ICE car is priced around USD 7 000. Large models and SUVs accounted for over 65% of total electric car sales. While BYD announced in 2023 the goal of accounting for 40% of India’s EV market by 2030, all of its models available in India cost more than INR 3 million (Indian rupees) (USD 37 000), including the Seal, launched in 2024 for INR 4.1 million (USD 50 000).
Similarly, SUVs and large models accounted for the majority share of electric car sales in Thailand (60%), Indonesia (55%), Malaysia (over 85%) and Viet Nam (over 95%). In Indonesia, for example, Hyundai’s Ionic 5 was the most popular electric car in 2023, priced at around USD 50 000. Looking at launch announcements, most new models expected over the 2024-2028 period in EMDEs are SUVs or large models. However, more than 50 small and medium models could also be introduced, and the recent or forthcoming entry of Chinese carmakers suggests that cheaper models could hit the market in the coming years.
In 2022-2023, Chinese carmakers accounted for 40-75% of the electric car sales in Indonesia, Thailand and Brazil, with sales jumping as cheaper Chinese models were introduced. In Thailand, for example, Hozon launched its Neta V model in 2022 priced at THB 550 000 (Thai baht) (USD 15 600), which became a best-seller in 2023 given its relative affordability compared with the cheapest ICE equivalents at around USD 9 000. Similarly, in Indonesia, the market entry of Wuling’s Air EV in 2022-2023 was met with great success. In Colombia, the best-selling electric car in 2023 was the Chinese mini-car, Zhidou 2DS, which could be found at around USD 15 000, a competitive option relative to the country’s cheapest ICE car, the Kia Picanto, at USD 13 000.
Electric car sales in selected countries, by origin of carmaker, 2021-2023
OpenSecond-hand markets for electric cars are on the rise
As electric vehicle markets mature, the second-hand market will become more important
In the same way as for other technology products, second-hand markets for used electric cars are now emerging as newer generations of vehicles progressively become available and earlier adopters switch or upgrade. Second-hand markets are critical to foster mass-market adoption, especially if new electric cars remain expensive, and used ones become cheaper. Just as for ICE vehicles – for which buying second-hand is often the primary method of acquiring a car in both emerging and advanced economies – a similar pattern will emerge with electric vehicles. It is estimated that eight out of ten EU citizens buy their car second-hand, and this share is even higher – around 90% – among low- and middle-income groups. Similarly, in the United States, about seven out of ten vehicles sold are second-hand, and only 17% of lower-income households buy a new car.
As major electric car markets reach maturity, more and more used electric cars are becoming available for resale. Our estimates suggest that in 2023, the market size for used electric cars amounted to nearly 800 000 in China, 400 000 in the United States and more than 450 000 for France, Germany, Italy, Spain, the Netherlands and the United Kingdom combined. Second-hand sales have not been included in the numbers presented in the previous section of this report, which focused on sales of new electric cars, but they are already significant. On aggregate, global second-hand electric car sales were roughly equal to new electric car sales in the United States in 2023. In the United States, used electric car sales are set to increase by 40% in 2024 relative to 2023. Of course, these volumes are dwarfed by second-hand ICE markets: 30 million in the European countries listed above combined, nearly 20 million in China, and 36 million in the United States. However, these markets have had decades to mature, indicating greater longer-term potential for used electric car markets.
Used car markets already provide more affordable electric options in China, Europe and the United States
Second-hand car markets are increasingly becoming a source of more affordable electric cars that can compete with used ICE equivalents. In the United States, for example, more than half of second-hand electric cars are already priced below USD 30 000. Moreover, the average price is expected to quickly fall towards USD 25 000, the price at which used electric cars become eligible for the federal used car rebate of USD 4 000, making them directly competitive with best-selling new and used ICE options. The price of a second-hand Tesla in the United States dropped from over USD 50 000 in early 2023 to just above USD 33 000 in early 2024, making it competitive with a second-hand SUV and many new models as well (either electric or conventional). In Europe, second-hand battery electric cars can be found between EUR 15 000 and EUR 25 000 (USD 16 000‑27 000), and second-hand plug-in hybrids around EUR 30 000 (USD 32 000). Some European countries also offer subsidies for second-hand electric cars, such as the Netherlands (EUR 2 000), where the subsidy for new cars has been steadily declining since 2020, while that for used cars remains constant, and France (EUR 1 000). In China, used electric cars were priced around CNY 75 000 on average in 2023 (USD 11 000).
In recent years, the resale value8 of electric cars has been increasing. In Europe, the resale value of battery electric cars sold after 12 months has steadily increased over the 2017-2022 period, surpassing that of all other powertrains and standing at more than 70% in mid-2022. The resale value of battery electric cars sold after 36 months stood below 40% in 2017, but has since been closing the gap with other powertrains, reaching around 55% in mid-2022. This is the result of many factors, including higher prices of new electric cars, improving technology allowing vehicles and batteries to retain greater value over time, and increasing demand for second-hand electric cars. Similar trends have been observed in China.
High or low resale values have important implications for the development of second-hand electric car markets and their contributions to the transition to road transport electrification. High resale values primarily benefit consumers of new cars (who retain more of the value of their initial purchase), and carmakers, because many consumers are attracted by the possibility of reselling their car after a few years, thereby fostering demand for newer models. High resale values also benefit leasing companies, which seek to minimise depreciation and resell after a few years.
Leasing companies have a significant impact on second-hand markets because they own large volumes of vehicles for a shorter period (under three years, compared to 3 to 5 years for a private household). Their impact on markets for new cars can also be considerable: leasing companies accounted for over 20% of new cars sold in Europe in 2022.
Overall, a resale value for electric cars on par with or higher than that of ICE equivalents contributes to supporting demand for new electric cars. In the near term, however, a combination of high prices for new electric cars and high resale values could hinder widespread adoption of used EVs among mass-market consumers seeking affordable cars. In such cases, policy support can help bridge the gap with second-hand ICE prices.
International trade for used electric cars to emerging markets is expected to increase
As the EV stock ages in advanced markets, it is likely that more and more used EVs will be traded internationally, assuming that global standards enable technology compatibility (e.g. for charging infrastructure). Imported used vehicles present an opportunity for consumers in EMDEs, who may not have access to new models because they are either too expensive or not marketed in their countries.
Data on used car trade flows are scattered and often contradictory, but the history of ICE cars can be a useful guide to what may happen for electric cars. Many EMDEs have been importing used ICE vehicles for decades. UNEP estimates that Africa imports 40% of all used vehicles exported worldwide, with African countries typically becoming the ultimate destination for used imports. Typical trade flows include Western European Union member states to Eastern European Union member states and to African countries that drive on the right-hand side; Japan to Asia and to African countries that drive on the left-hand side; and the United States to the Middle East and Central America.
Used electric car exports from large EV markets have been growing in recent years. For China, this can be explained by the recent roll-back of a policy forbidding exports of used vehicles of any kind. Since 2019, as part of a pilot project, the government has granted 27 cities and provinces the right to export second-hand cars. In 2022, China exported almost 70 000 used vehicles, a significant increase on 2021, when fewer than 20 000 vehicles were exported. About 70% of these were NEVs, of which over 45% were exported to the Middle East. In 2023, the Ministry of Commerce released a draft policy on second-hand vehicle export that, once approved, will allow the export of second-hand vehicles from all regions of China. Used car exports from China are expected to increase significantly as a result.
In the European Union, the number of used electric cars traded internationally is also increasing. In both 2021 and 2022, the market size grew by 70% year-on-year, reaching almost 120 000 electric cars in 2022. More than half of all trade takes place between EU member states, followed by trade with neighbouring countries such as Norway, the United Kingdom and Türkiye (accounting for 20% combined). The remainder of used EVs are exported to countries such as Mexico, Tunisia and the United States. As of 2023, the largest exporters are Belgium, Germany, the Netherlands, and Spain.
Last year, just over 1% of all used cars leaving Japan were electric. However these exports are growing and increased by 30% in 2023 relative to 2022, reaching 20 000 cars. The major second-hand electric car markets for Japanese vehicles are traditionally Russia and New Zealand (over 60% combined). After Russia’s invasion of Ukraine in 2022, second-hand trade of conventional cars from Japan to Russia jumped sharply following a halt in operations of local OEMs in Russia, but this trade was quickly restricted by the Japanese government, thereby bringing down the price of second-hand cars in Japan. New Zealand has very few local vehicle assembly or manufacturing facilities, and for this reason many cars entering New Zealand are used imports. In 2023, nearly 20% of all electric cars that entered New Zealand were used imports, compared to 50% for the overall car market.
In emerging economies, local policies play an important role in promoting or limiting trade flows for used cars. In the case of ICE vehicles, for example, some countries (e.g. Bolivia, Côte d’Ivoire, Peru) limit the maximum age of used car imports to prevent the dumping of highly polluting cars. Other countries (e.g. Brazil, Colombia, Egypt, India, South Africa) have banned used car imports entirely to protect their domestic manufacturing industries.
Just as for ICE vehicles, policy measures can either help or hinder the import of used electric cars, such as by setting emission standards for imported used cars. Importing countries will also need to simultaneously support roll-out of charging infrastructure to avoid problems with access like those reported in Sri Lanka after an incentive scheme significantly increased imports of used EVs in 2018.
The median age of vehicle imports tends to increase as the GDP per capita of a country decreases. In some African countries, the median age of imports is over 15 years. Beyond this timeframe, electric cars may require specific servicing to extend their lifetime. To support the availability of second-hand markets for electric cars, it will be important to develop strategies, technical capacity, and business models to swap very old batteries from used vehicles. Today, many countries that import ICE vehicles, including EMDEs, already have servicing capacity in place to extend the lifetimes of used ICE vehicles, but not used EVs. On the other hand, there are typically fewer parts in electric powertrains than in ICE ones, and these parts can even be more durable. Battery recycling capacity will also be needed, given that the importing country is likely to be where the imported EV eventually reaches end-of-life. Including end-of-life considerations in policy making today can help mitigate the risk of longer-term environmental harm that could result from the accumulation of obsolete EVs and associated waste in EMDEs.
Policy choices in more mature markets also have an impact on possible trade flows. For example, the current policy framework in the European Union for the circularity of EV batteries may prevent EVs and EV batteries from leaving the European Union, which brings energy security advantages but might limit reuse. In this regard, advanced economies and EMDEs should strengthen co-operation to facilitate second-hand trade while ensuring adequate end-of-life strategies. For example, there could be incentives or allowances associated with extended vehicle lifetimes via use in second-hand markets internationally before recycling, as long as recycling in the destination market is guaranteed, or the EV battery is returned at end of life.
References
Throughout this report, unless otherwise specified, “electric cars” refers to both battery electric and plug-in hybrid cars, and “electric vehicles” (EVs) refers to battery electric (BEV) and plug-in hybrid (PHEV) vehicles, excluding fuel cell electric vehicles (FCEV). Unless otherwise specified, EVs include all modes of road transport.
Throughout this report, unless otherwise specified, regional groupings refer to those described in the Annex.
In the Chinese context, the term New Energy Vehicles (NEVs) includes BEVs, PHEVs and FCEVs.
Based on model trim eligibility from the US government website as of 31 March 2024.
SUVs may be defined differently across regions, but broadly refer to vehicles that incorporate features commonly found in off-road vehicles (e.g. four-wheel drive, higher ground clearance, larger cargo area). In this report, small and large SUVs both count as SUVs. Crossovers are counted as SUVs if they feature an SUV body type; otherwise they are categorised as medium-sized vehicles.
Measured under the Worldwide Harmonised Light Vehicles Test Procedure using vehicle model sales data from IHS Markit.
Price data points collected from various data providers and ad-hoc sources cover 65-95% of both electric and ICE car sales globally. By “price”, we refer to the advertised price that the customer pays for the acquisition of the vehicle only, including legally required acquisition taxes (e.g. including Value-Added Tax and registration taxes but excluding consumer tax credits). Prices reflect not only the materials, components and manufacturing costs, but also the costs related to sales and marketing, administration, R&D and the profit margin. In the case of a small electric car in Europe, for example, these mark-up costs can account for around 40% of the final pre-tax price. They account for an even greater share of the final pre-tax price when consumers purchase additional options, or opt for larger models, for which margins can be higher. The price for the same model may differ across countries or regions (e.g. in 2023, a VW ID.3 could be purchased in China at half its price in Europe). Throughout the whole section, prices are adjusted for inflation and expressed in constant 2022 USD.
This metric of depreciation used in second-hand technology markets represents the value of the vehicle when being resold in relation to the value when originally purchased. A resale value of 70% means that a product purchased new will lose 30% of its original value, on average, and sell at such a discount relative to the original price.
Throughout this report, unless otherwise specified, “electric cars” refers to both battery electric and plug-in hybrid cars, and “electric vehicles” (EVs) refers to battery electric (BEV) and plug-in hybrid (PHEV) vehicles, excluding fuel cell electric vehicles (FCEV). Unless otherwise specified, EVs include all modes of road transport.
Throughout this report, unless otherwise specified, regional groupings refer to those described in the Annex.
In the Chinese context, the term New Energy Vehicles (NEVs) includes BEVs, PHEVs and FCEVs.
Based on model trim eligibility from the US government website as of 31 March 2024.
SUVs may be defined differently across regions, but broadly refer to vehicles that incorporate features commonly found in off-road vehicles (e.g. four-wheel drive, higher ground clearance, larger cargo area). In this report, small and large SUVs both count as SUVs. Crossovers are counted as SUVs if they feature an SUV body type; otherwise they are categorised as medium-sized vehicles.
Measured under the Worldwide Harmonised Light Vehicles Test Procedure using vehicle model sales data from IHS Markit.
Price data points collected from various data providers and ad-hoc sources cover 65-95% of both electric and ICE car sales globally. By “price”, we refer to the advertised price that the customer pays for the acquisition of the vehicle only, including legally required acquisition taxes (e.g. including Value-Added Tax and registration taxes but excluding consumer tax credits). Prices reflect not only the materials, components and manufacturing costs, but also the costs related to sales and marketing, administration, R&D and the profit margin. In the case of a small electric car in Europe, for example, these mark-up costs can account for around 40% of the final pre-tax price. They account for an even greater share of the final pre-tax price when consumers purchase additional options, or opt for larger models, for which margins can be higher. The price for the same model may differ across countries or regions (e.g. in 2023, a VW ID.3 could be purchased in China at half its price in Europe). Throughout the whole section, prices are adjusted for inflation and expressed in constant 2022 USD.
This metric of depreciation used in second-hand technology markets represents the value of the vehicle when being resold in relation to the value when originally purchased. A resale value of 70% means that a product purchased new will lose 30% of its original value, on average, and sell at such a discount relative to the original price.